Genetics of CNS abnormalities
The prenatal Diagnosis Perspective

Ignatia B. Van den Veyver, M.D.
Dept. of Obstetrics and Gynecology
Dept. of Molecular and Human Genetics
Baylor College of Medicine
Houston, TX, USA
iveyver@bcm.edu
General Principles

• Major anomalies can be seen as early as the first trimester: e.g. anencephaly, holoprosencephaly
• Many CNS defects are not detectable until past 20-22 weeks
• Limited and evolving phenotypes throughout pregnancy
• Associated abnormalities
• Functional sequelae cannot be assessed
• Multiple imaging modalities and timing (Ultrasound & MRI)
• Multidisciplinary approach
Multidisciplinary Approach for Diagnosis and Management

- Prenatal care provider
- Sonographer
- Maternal-fetal medicine
- Radiology
- Prenatal and pediatric genetics
- Neonatology
- Pediatric neurology
- Neurosurgery
- Other subspecialties (associated defects)
- Perinatal Hospice (PPACT: Perinatal Pediatric Advanced Care Team)
Importance of a Prenatal Genetic Evaluation

• Syndromic vs. non-syndromic
• Prognosis counseling – reducing uncertainty
• Preparation of families
• Recurrence risk counseling
• Prenatal and perinatal management decisions
• Treatments that improve outcomes, life quality, developmental potential exist for some disorders

• Limited time to get genetic diagnosis
• Important decisions are made
Amniocentesis should be offered when there are birth defects

- Cells are of fetal origin: genetic testing
- **RISKS:** older data 1 in 300-500
- New meta analysis: ~1/909
- ACOG revised: 0.1-0.3%
- Chromosomal microarray
- (Karyotype)
- (Single gene testing)
- Panel or **exome**
Chromosomal abnormalities in CNS defects (complex phenotypes)

<table>
<thead>
<tr>
<th>CNS anomaly</th>
<th>% abnl</th>
<th>Predominant karyotypic abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcephaly</td>
<td>frequent</td>
<td>T9, T13, T18, SCA</td>
</tr>
<tr>
<td>Holoprosencephaly</td>
<td>50</td>
<td>T13, T18</td>
</tr>
<tr>
<td>Dandy-Walker malformation</td>
<td>45-55</td>
<td>T9, T13, T18, T21, triploidy, del3q24, del6p25, dup5p, dup8p, dup8q</td>
</tr>
<tr>
<td>Micro-anophthalmia</td>
<td>25+</td>
<td>T13</td>
</tr>
<tr>
<td>Agenesis of corpus callosum</td>
<td>18</td>
<td>T8, T13, T18, del11q</td>
</tr>
<tr>
<td>Spina bifida meningomyelocele</td>
<td>17</td>
<td>T13, T18, triploidy</td>
</tr>
<tr>
<td>Isolated ventriculomegaly</td>
<td>12</td>
<td>T21, 47,XXY</td>
</tr>
<tr>
<td>Anencephaly</td>
<td>9</td>
<td>Variable, incl T13, T18, triploidy</td>
</tr>
<tr>
<td>Chiari malformation</td>
<td>occasional</td>
<td>T13, T18</td>
</tr>
</tbody>
</table>

Microarray Utility for prenatally detected Fetal Structural Congenital anomalies

(Hillman, 2013)
Value of prenatal CMA in fetuses with structural abnormalities and normal karyotype varies by type of anomaly

<table>
<thead>
<tr>
<th>Anomaly type</th>
<th>Pooled prevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td>22/476 = 4.6% (2.7-6.5)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>5/81 = 6.2% (0.9-11.4)</td>
</tr>
<tr>
<td>CNS</td>
<td>35/563 = 6.2% (4.2-8.2)</td>
</tr>
<tr>
<td>Facial</td>
<td>6/113 = 5.3% (1.2-9.4)</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>24/305 = 7.9% (4.8-10.9)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>7/105 = 6.7% (1.9-11.4)</td>
</tr>
<tr>
<td>Urogenital</td>
<td>9/153 = 5.9% (2.2-9.6)</td>
</tr>
<tr>
<td>Increased NT > 3.5 mm</td>
<td>5/162 = 3.1% (0.4-5.7)</td>
</tr>
<tr>
<td>Cystic Hygroma</td>
<td>12/262 = 4.6% (2.0-7.1)</td>
</tr>
<tr>
<td>Total isolated anomalies</td>
<td>125/2220 = 5.6% (4.7-6.6)</td>
</tr>
<tr>
<td>Multiple anomalies</td>
<td>104/1139 = 9.1% (7.5-10.8)</td>
</tr>
<tr>
<td>All anomalies</td>
<td>229/3359 = 6.8% (6.0-7.7)</td>
</tr>
</tbody>
</table>
Copy Number Changes

<table>
<thead>
<tr>
<th>System or Malformation</th>
<th>isolated</th>
<th>With anomaly in other systems</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significant finding</td>
<td>DR %</td>
<td>Significant finding</td>
</tr>
<tr>
<td>Total CNS</td>
<td>25/382</td>
<td>6.5</td>
<td>35/317</td>
</tr>
<tr>
<td>Posterior fossa defects</td>
<td>5/74</td>
<td>6.8</td>
<td>16/70</td>
</tr>
<tr>
<td>Cerebellar Hypoplasia</td>
<td>5/30</td>
<td>16.7</td>
<td>5/21</td>
</tr>
<tr>
<td>Dandy Walker Malformation</td>
<td>1/44</td>
<td>2.3</td>
<td>11/43</td>
</tr>
<tr>
<td>Holoprosencephaly</td>
<td>8/53</td>
<td>15.1</td>
<td>1/32</td>
</tr>
<tr>
<td>Ventriculomegaly</td>
<td>3/84</td>
<td>3.6</td>
<td>10/88</td>
</tr>
<tr>
<td>Agenesis of Corpus Callosum</td>
<td>2/45</td>
<td>4.4</td>
<td>2/24</td>
</tr>
<tr>
<td>Microcephaly</td>
<td>1/32</td>
<td>3.1</td>
<td>1/5</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>3/66</td>
<td>4.5</td>
<td>2/34</td>
</tr>
<tr>
<td>Spinal Defects</td>
<td>0/20</td>
<td>0.0</td>
<td>2/35</td>
</tr>
</tbody>
</table>

Exome Sequencing has Accelerated Gene Discovery in Developmental Brain Disorders

![Graph showing the increase in known genetic associations from 2005 to 2014.]

- 27 known genetic associations in 2005
- >100 known genetic associations in 2012
- ~200 known genetic associations in 2014

Figure 1. The past decade has seen a rapid rate of gene discovery in developmental brain disorders.

Contribution of exome sequencing

- Single gene disorders

High diagnostic rate for CNS defects in recent prenatal and early neonatal exome studies

- BCM ~35%

Agenesis and Dysgenesis of Corpus Callosum (ACC)

- CC not developed until 18-20 weeks, continues to thicken until after birth
 - Early signs: absent cavum septum pellucidum, colpocephaly
 - US has 20% FPR - If suspected, consider MRI (22 weeks)
- One of the most common CNS abnormalities diagnosed in the fetus: complete or partial
- Prevalence of ACC:
 - ~1:1000 overall but 2-3% if intellectual disability
 - ~50% have other CNS abnormalities,
 - Up to 65% have non-CNS abnormalities
 - 5-20% isolated ACC prenatally → associated anomalies postnatally

ACC at 28w3d

Agenesis and Dysgenesis of Corpus Callosum (ACC)

- **Etiological heterogeneity:**
 - Chromosomal abnormality: 17.8%
 - If normal karyotype: CNV in 5.8% - 9.4%
 - Syndromic: many syndromes in OMIM have ACC
 - Single genes in isolated ACC
 - Metabolic / Environmental / rarely vascular, hypoxic

- **Prognosis:**
 - Syndromic: depends on associated syndrome
 - Isolated:
 - 70-80% have normal intelligence
 - 20-30% have neurodevelopmental delay, of which 11% severe in some series
 - All may be predisposed to learning and social deficits

ACC at 28w3d

Some syndromes with ACC

- Aicardi syndrome: no gene known
- Mowat-Wilson syndrome: ZEB2
- Acrocallosal syndrome: KIF7
- ATR-X disorders: ATRX
- Opitz G syndrome: MID1
- Mental retardation Adducted thumbs, Shuffling gait, Ataxia (MASA) and hydrocephalus with aqueductal stenosis: L1CAM

Hydrocephalus

• Incidence:
 – ~1:1000 live births
 – *Mild* ventriculomegaly (VM) (10-12 mm): 10% - 40% (?) associated abnormalities
 – *Moderate* VM (12.1-15 mm): up to 76% (?) associated abnormalities
 – *Severe* VM (>15 mm): 60% associated abnormalities (ACC, NTD)

• Multifactorial:
 • Primary
 • Secondary:
 – Environmental (infection)
 – Obstructive – non-obstructive

D’Addario V, Rossi AC. Semin Fetal Neonat Med 2012;17:310-318
Hydrocephalus

• Prognosis:
 – Primary: depends on genetic mutation / disorder and associated abnormalities
 • more associated anomalies if symmetrical VM; 39% vs. 24%
 – Secondary: depends on cause
 – Injury to the brain from mass effect and pressure
 – Severe: 11-62.5% no neurological deficit
 – Mild: 77.4%-100% no neurological deficit
 – But limited studies on long-term outcome

D’Addario V, Rossi AC. Semin Fetal Neonat Med 2012;17:310-318
Genetic defects and Hydrocephalus

• Chromosomal abnormalities:
 – Mild VM: 2-3%;
 – Moderate VM: 14.2%;
 – Severe VM: 17.4%
 – With associated abnormalities: >15%
 – If normal karyotype: clinically significant CNVs in 7.6%

• Associated with other defects - syndromes

Aqueductal stenosis at 21w2d

D’Addario V, Rossi AC. Semin Fetal Neonat Med 2012;17:310-318
X-linked aqueductal stenosis

- **L1CAM** gene in Xq28
- Males + severe hydrocephalus (+ aqueductal stenosis) → 57/138 (41%) have mutations in *L1CAM*
- Adducted thumbs in 88%
- Aqueductal stenosis in 90%
- Pyramidal tract hypoplasia (role for prenatal tractography?)
- Agenesis of corpus callosum in 68%
- MASA: mental retardation, adducted thumbs, shuffling gait, aphasia

D’Addario V, Rossi AC. Semin Fetal Neonat Med 2012;17:310-318
Holoprosencephaly (HPE)

- 1:250 conceptuses
- 0.4-1.2:10,000 live births
 - Most affected fetuses do not survive
- 40% Alobar, 43% semilobar, 17% lobar
- Variants: interhemispheric and septo-preoptic
- Additional anomalies:
 - **Facial (80%)**: hypotelorism, cyclopia, proboscis, anophthalmia, cleft lip/palate
 - **Intracranial**: absent septum pellucidum, ACC, pituitary hypoplasia, neuronal migration abnormalities, hydrocephalus
 - Other anomalies if syndromic, chromosomal

Images of Holoprosencephaly at different stages

Huang J, et al. Semin Fetal Neonat Med 2012;17:341-346
Holoprosencephaly (HPE)

- **Environmental:** diabetes (1% risk), teratogens
- **Genetic**
 - **Chromosomal:** 32-41%
 - Trisomy 13: 75%
 - Triploidy: 20%
 - Trisomy 18: 1-2%
 - Prenatal CMA: Clinically significant CNV in >10% with normal karyotype
 - **Syndromic:** 18-25%
 - 10% cholesterol biosynthesis abnormality (Smith-Lemli-Opitz syndrome)
 - **Isolated (non-syndromic):** Autosomal dominant forms
 - microform can be present in parent (single incisor)

Holoprosencephaly (HPE)

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Phenotype OMIM number</th>
<th>Chromosome location</th>
<th>Gene</th>
<th>Gene OMIM number</th>
<th>Inheritance</th>
<th>Animal model</th>
<th>Associated features</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudotruncus lissencephaly</td>
<td>264410</td>
<td>13q32, 5q21</td>
<td>SHH</td>
<td>605651</td>
<td>AR</td>
<td>None</td>
<td>Polydactyly, vertebral septal defect, microphthalmia</td>
<td>Koolen et al.</td>
</tr>
<tr>
<td>Pallister-Hall syndrome</td>
<td>146510</td>
<td>7q14.1</td>
<td>ZIC2</td>
<td>605240</td>
<td>AD</td>
<td>None</td>
<td>Hypothalamic hamartoma, hypopituitarism, polydactyly</td>
<td>Johnston et al.</td>
</tr>
<tr>
<td>Smith-Lemli-Opitz</td>
<td>270400</td>
<td>11q13.4</td>
<td>SIX3</td>
<td>602838</td>
<td>AR</td>
<td>Mouse, rat</td>
<td>Microcephaly, postnatal developmental delay</td>
<td>Yu et al.</td>
</tr>
<tr>
<td>Velocardiofacial</td>
<td>192430</td>
<td>22q11.21</td>
<td>TGIF1</td>
<td>602034</td>
<td>AD</td>
<td>Mouse</td>
<td>Cleft palate, congenital heart disease, short stature</td>
<td>Paylor et al.</td>
</tr>
</tbody>
</table>

Gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus</th>
<th>% HPE with pos fam Hx</th>
<th>Simplex cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHH</td>
<td>7q36</td>
<td>30-40%</td>
<td><5%</td>
</tr>
<tr>
<td>ZIC2</td>
<td>13q32</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>SIX3</td>
<td>2p21</td>
<td>1.3%</td>
<td>rare</td>
</tr>
<tr>
<td>TGIF1</td>
<td>18p11.3</td>
<td>1.3%</td>
<td>rare</td>
</tr>
<tr>
<td>GLI2</td>
<td>2q14</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>PTCH1</td>
<td>9q22.3</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>DISP1</td>
<td>1q42</td>
<td>rare</td>
<td>rare</td>
</tr>
</tbody>
</table>

Additional Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus</th>
<th>% HPE with pos fam Hx</th>
<th>Simplex cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGFR8</td>
<td>10q24</td>
<td>rare</td>
<td>rare</td>
</tr>
<tr>
<td>FOXH1</td>
<td>8q24.3</td>
<td>rare</td>
<td>rare</td>
</tr>
<tr>
<td>NODAL</td>
<td>10q22.1</td>
<td>rare</td>
<td>rare</td>
</tr>
<tr>
<td>TDGF1</td>
<td>3p23-p21</td>
<td>rare</td>
<td>rare</td>
</tr>
<tr>
<td>GAS1</td>
<td>9q21.33</td>
<td>rare</td>
<td>rare</td>
</tr>
<tr>
<td>DLL1</td>
<td>6q27</td>
<td>rare</td>
<td>rare</td>
</tr>
<tr>
<td>CDON</td>
<td>11q24.2</td>
<td>rare</td>
<td>rare</td>
</tr>
</tbody>
</table>

References

Multiple genes

Karyotype/CMA

Panels Exomes
Classification of Cortical Malformations

Defects in proliferation
- Somatic mutations
 - Hemimegalencephaly
- Germline mutations
 - Microcephaly

Defects in migration
- Listencephaly
- Neurons
- Migrating neuron
- Neuroprogenitor

Defects in connectivity
- Autism
- Intellectual disability

Defects in Proliferation

• Microcephaly
 – Primary microcephaly
 – Many genes (MCPH loci)
 – Centrosomal and pericentriolar proteins
 – Can be prenatal onset and postnatal onset
 – Can be associated with other abnormalities

• Megalencephaly
 – Global megalencephaly primary or secondary (overgrowth)
 – Hemimegalencephaly
 – Focal cortical dysplasias
 – Role of PI3K-AKT-mTOR pathway activation
 – Somatic mosaic mutations; second hit (TSC)

Microcephaly

- Congenital microcephaly:
 - HC <2SD or <3SD
 - Primary microcephaly (MCPH)
 - Microcephalic primordial dwarfism (MPD): Seckel syndrome, Meier Gorlin syndrome
 - Other: destructive (infection, Zika), environmental (drugs, IR)

- Prognosis:
 - -2SD: 10% intellectual disability
 - -3SD: 50% severe intellectual disability
 - Depends on associated intra- and extracranial anomalies

Microcephaly – Genetic Causes

• Chromosomal abnormalities
• CNVs in 5.4% with normal karyotype
• Multiple genes with fundamental roles in chromosomal segregation and mitotic division - Radial glia cells
 – MCPH: many encode centrosomal proteins involved in centriole biogenesis - chromosomal segregation and mitotic division
 – DNA repair and damage response
 – DNA replication and cilia function
 – Many autosomal recessive forms
Megalencephaly

- Storage in neurons and other cells:
 - Metabolic causes, lysosomal storage disorders

- Overgrowth & other syndromes:
 - Sotos (NSD1): tall, brain anomalies, ID, dolichocephaly
 - Weaver S (EZH2): prenatal overgrowth + brain + other
 - Tuberous sclerosis (TSC1 and TSC2)
 - Simpson-Golabi-Behmel S (GPC3)
 - Bannayan-Riley-Ruvalcaba S, Cowden S (PTEN)
 - Proteus S (mosaic AKT1 mutation): postnatal onset in most; prenatal form with hemimegalencephaly

Megalencephaly

• Segmental brain overgrowth:
 – Hemimegalencephaly and Megalencephaly capillary malformation (MCAP): PIK3CA
 – Megalencephaly-Polymicrogyria-Polydactyly-Hydrocephalus (MPPH): PIK3R2, CCND2, AKT3

• Mosaic mutations:
 – Can be challenging to detect prenatally
 – Cultured cells: proliferative advantage

Tuberous Sclerosis

• Prenatal features:
 – Cortical tubers – 70%
 – Subependymal nodules – 90%
 – Cardiac rhabdomyoma (single or multiple; can resolve)
 – Clinical variability
 – Seizures in 80%
 – Neurodevelopmental (50%) and behavioral impairment

• Genetics:
 – Autosomal dominant; 2/3 are de novo mutations
 – 85% of individuals with criteria for TS have mutations:
 • 31% in TSC1
 • 69% in TSC2 - more severe
 • Germline (5%) and somatic (1%) mosaicism

Malformations of Cortical Development

- **Heterotopias:**
 - Subcortical band heterotopia (SBH)
 - Periventricular heterotopias (PVH)

- **Gyral malformations:** *(postmigrational)*
 - Polymicrogyria (PMG), agyria, pachygyria

- **Lissencephaly:**
 - Classic: type I or Cobblestone: type II

- **Many syndromes:**
 - Combination of above or isolated or + other CNS abnormalities

PVH at 21w5d

PMG at 35w5d

Bilateral Periventricular Nodular Heterotopia

• Loss of function mutations in Filamin A (FLNA) on Xq28 in 49% but also other causes
 – In 100% of familial cases and in 25% of sporadic cases

• X-linked dominant:
 – Females: variable (mosaic and X-inactivation), Males: prenatal lethal (hypomorph and mosaic mutations possible)

• Other CNS findings:
 – Bilateral nearly contiguous PVH in lateral ventricles, normal appearing cortex, thin corpus callosum, posterior fossa and cerebellar abnormalities

• Manifests as seizure disorder

Polymicrogyria

• 20% of all malformations of cortical development - Difficult to see by ultrasound → Fetal MRI
 – Isolated
 – With other CNS abnormalities
 – With other non-CNS abnormalities

• Non-genetic: infections (CMV, other), ischemia

• Microdeletions
 – Cardiac anomalies + (perisylvian) PMG → think 22q11.2 deletion
 – 1p36, other

• Single gene disorders (multiple genes!)
 – PMG with cysts: think Aicardi S (X-linked - no gene known!)
 – Metabolic/lysosomal, Tubulinopathies

Romero DM
Sequelae of Polymicrogyria

- Epilepsy 78%
- Global developmental delay 70%
- Spasticity (hemiplegia, paraplegia) 51%
- Dysmorphic features 45%
- Arthrogryposis, talipes
- In utero presentation (may increase with MRI) 5%
- Macrocephaly 50%
- Microcephaly 5%
- Hydrocephalus (MCAP, MPPH)

Depends on underlying cause + associated findings

Lissencephaly

- “lissos” (smooth) “enkephalos” (brain)
- 11.7 – 40 / million births
- Classical lissencephaly (type I): 1.2:100,000 births
 - Thick 4-layer cortex, absence of other major brain anomalies
 - Grades 1 – 6: complete agyria (1) to mild (6)
 - Undermigration
- Cobblestone complex (type 2): 1:100,000 births
 - Overmigration
- Variant lissencephaly:
 - lissencephaly with agenesis of the corpus callosum (XLAG)
 - lissencephaly with cerebellar hypoplasia (LCH)
 - microlissencephaly.

Classic Lissencephaly

- Undermigration of neurons
- Agyria or pachygyria
- Three main genes:
 - *LIS1*: 17p13.3
 - Miller-Dieker syndrome
 - Isolated lissencephaly
 - *DCX*: Xq22.3
 - *TUBA1A*: 12q12-14
- Rarer case can be caused by other genes

76% of classic lissencephaly

4% of classic lissencephaly
Cobblestone Cortical Malformation

- Nodular surface: Neuronal overmigration → very disorganized cortex
- Dystroglycanopathies
 - Walker-Warburg syndrome (WWS), muscle-eye-brain disease (MEB), other congenital muscular dystrophies (Fukuyama)
- Other CNS anomalies

Cerebellum and posterior fossa

• 1:5000 live births
• 20-100% impaired neurological outcome – depends on type and associated anomalies

• Primary cerebellar hypoplasia
 – Chromosomal abnormality in 16.3%; abnl CMA in 13.7%
 – Metabolic: Smith-Lemli-Opitz, Mb deficiency, AS deficiency
 – Single gene disorders:
 • Ritscher-Schinzel S: RTSC1/SPG8 (KIAA0196), RTSC2 (CCDC22))
 • Joubert spectrum: multiple genes and loci
 • CHARGE S (mulitple other anomalies): CHD7
 • Acrocallosal S (KIF7); other syndromes

• Secondary: CMV, teratogens, prematurity

Mega-Cisterna magna

- 40% of all prenatally detected posterior fossa abnormalities
- 4th ventricle, cerebellar hemispheres and vermis are normal

Isolated MCM:
- 92-100% have normal developmental outcome
- Higher cognitive functions (verbal memory and fluency) may be impaired

MCM with associated CNS and non-CNS defects:
- 29% to 2/3 develop normally
- 1/3 cognitive and language and motor delay

Dandy-Walker Malformation

• Complete or partial agenesis of vermis, cystic dilation of 4th ventricle, enlarged posterior fossa with upward displacement of tentorium
• Up to 86% have other abnormalities; 49% other CNS anomaly
• Up to 1/3 develop normally
• With vermis lobulation: 82%-90% have normal IQ;
• Abnormal IQ:
 – Associated CNS or extra-CNS malformations
 – Absent or abnormal vermis lobulation:
• 50% neurological abnormalities
 – 50% hypotonia
 – 42% cerebellar dysfunction
 – 5% hemiparesis

DWM at 34w3d

Vermian hypoplasia and cerebellar hypoplasia/dysgenesis

• Up to 70% with other anomalies
 – Poor prognosis for neurodevelopmental outcome
• Isolated VH:
 – 77% have normal development
 – 23% have neurological abnormalities:
 • Gross and fine motor disability
 • Social and communication defects
 • 15% behavioral
 • 23% hypotonia
 – Isolated CH:
 • Worse outcome than VH

Joubert Syndrome and Related disorders

• **Molar tooth sign:**
 – Abnormally deep interpeduncular fossa
 – Enlarged superior cerebellar peduncles, more horizontally oriented
 – Hypoplastic cerebellar vermis

• **Associated anomalies:** renal, hepatic, eye, polydactyly

• **Overlap with other conditions**
 – Meckel syndrome -- Hydrolethalus syndrome
 – Nephronophtisis -- Acrocallosal syndrome
 – Bardet Biedl -- Orofacial digital syndrome

• **Developmental delays, hypotonia, breathing anomalies, ataxia abnormal eye movement, and facial dysmorphia**

Joubert syndrome
NIH cohort mutated genes

- Multiple genes: ciliopathies molecular diagnosis in 62-94%:
- autosomal recessive mutation in >33 genes
- 1 X-linked gene

Genetic and other testing

• Karyotype / chromosomal microarray beneficial for most findings
• Gene panel sequencing versus whole exome sequencing
• Amniocyte culture for suspected somatic mutations PIK3CA overgrowth syndromes
• Infection testing: CMV, Toxoplasmosis, Zika
 – HSV1/2 and syphilis much lower yield

Thank you

QUESTIONS?

iveyver@bcm.edu